Supersaturation of Dissolved Hydrogen and Methane in Rumen of Tibetan Sheep

نویسندگان

  • Min Wang
  • Emilio M. Ungerfeld
  • Rong Wang
  • Chuan She Zhou
  • Zhu Zha Basang
  • Si Man Ao
  • Zhi Liang Tan
چکیده

Hydrogen (H2) is an essential substrate for methanogens to produce methane (CH4), and also influences pathways of volatile fatty acids (VFA) production in the rumen. Dissolved H2 (H2 (aq)) is the form of H2 available to microbes, and dissolved CH4 (CH4 (aq)) is important for indicating methanogens activity. Rumen H2 (aq) concentration has been estimated by assuming equilibrium with headspace gaseous H2 (H2 (g)) concentration using Henry's law, and has also been directly measured in the liquid phase in some in vitro and in vivo experiments. In this in vivo study, H2 (aq) and CH4 (aq) concentration measured directly in rumen fluid and their corresponding concentrations estimated from their gaseous phase concentrations, were compared to investigate the existence of equilibrium between the gas and liquid phases. Twenty-four Tibetan sheep were randomly assigned to two mixed diets containing the same concentrate mixed with oat grass (OG diet) or barley straw (BS diet). Rumen gaseous phase and contents were sampled using rumenocentesis and oral stomach tubing, respectively. Rumen H2 (aq) and CH4 (aq) concentration and VFA profile differed between sheep fed OG and BS diets. Measured H2 (aq) and CH4 (aq) concentration were greater than H2 (aq) and CH4 (aq) concentrations estimated using gas concentrations, indicating lack of equilibrium between gas and liquid phase and supersaturation of H2 and CH4 in rumen fluid. As a consequence, Gibbs energy changes (ΔG) estimated for various metabolic pathways were different when calculated using dissolved gases concentrations directly measured and when using dissolved gases concentrations assuming equilibrium with the gaseous phase. Dissolved CH4, but not CH4 (g), was positively correlated with H2 (aq). Both H2 (aq) and H2 (g) concentrations were positively correlated with the molar percentage of butyrate and negatively correlated with the molar percentage of acetate. In summary, rumen fluid was supersaturated with both H2 and CH4, and H2 (aq) was closely associated with the VFA profile and CH4 (aq) concentration. The assumption of equilibrium between dissolved gases and gaseous phase affected ΔG estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals

Studies of genetic adaptation, a central focus of evolutionary biology, most often focus on the host's genome and only rarely on its co-evolved microbiome. The Qinghai-Tibetan Plateau (QTP) offers one of the most extreme environments for the survival of human and other mammalian species. Yaks (Bos grunniens) and Tibetan sheep (T-sheep) (Ovis aries) have adaptations for living in this harsh high...

متن کامل

Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation

BACKGROUND Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methan...

متن کامل

The Effect of Native Grass Substitution Using Jengkol (Archidendron jiringa) Peel and Leaves Powder on in vitro Rumen Fermentation

The effect of substituting native grass with jengkol (Archidendron jiringa) by-product on fermentation characteristics, rumen microbial profile, methane production, and hydrogen balance using in vitro method was investigated. Seven treatments (different composition of native grass, jengkol peel, jengkol leaves, and concentrate) with five replications in a block randomized desi...

متن کامل

The Effects of Use Medicinal Plants on Rumen Fermentation Parameters in Ruminants

Rumen is a persistent and specific ecosystem consists of bacteria, protozoa and fungus where feed fermentation takes place in it. Produced Hydrogen in rumen can be used in the synthesis of the volatile fatty acids and the microbial protein and its excess would be eliminated through the production of Methane by methanogenesis. Nutritionists have tried to find ways to decrease loss and energy and...

متن کامل

The Effects of Use Medicinal Plants on Rumen Fermentation Parameters in Ruminants

Rumen is a persistent and specific ecosystem consists of bacteria, protozoa and fungus where feed fermentation takes place in it. Produced Hydrogen in rumen can be used in the synthesis of the volatile fatty acids and the microbial protein and its excess would be eliminated through the production of Methane by methanogenesis. Nutritionists have tried to find ways to decrease loss and energy and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016